FIRE RISK ANALYSIS IN THE PAINT SHOP OF AN AUTOMOBILE INDUSTRY

Final Year Project Report

Submitted by

RITWIZA PHUKAN

R080213027

In partial fulfillment for the award of the degree of

MASTER OF TECHNOLOGY IN

DISASTER MANAGEMENT

Under the guidance of

Dr. Nihal A. Siddiqui

Head of the Department

DEPARTMENT OF HEALTH, SAFETY, FIRE AND ENVIRONMENT COLLEGE OF ENGINEERING STUDIES UNIVERSITY OF PETROLEUM AND ENERGY STUDIES DEHARADUN

2015

UNIVERSITY OF PETROLEUM AND ENERRGY

STUDIES, DEHRADUN

BONAFIDE CERTIFICATE

Certified this titled "FIRE RISK ANALYSIS IN THE PAINT SHOP OF AN AUTOMOBILE INDUSTRY" is the bonafide work of **RITWIZA PHUKAN** (**R080213027**) who carried out the work under my supervision. Certified further that to the best of my knowledge the work reported herein does not form part of any other thesis or dissertation on the basis of which a degree or award was conferred on an earlier occasion on this or any other candidate.

INTERNAL GUIDE NAME

Dr. Nihal A. Siddiqui Head of Department Department of HSE UPES, Dehradun

ACKNOWLEDGEMENT

I am deeply indebted to **Dr. N. A. Siddiqui** (Associate Professor& Head, Dept. of Health, Safety & Environmental Engineering University of Petroleum & Energy Studies, Dehradun) for his inspiration, support and guidance throughout my course here. His passion and enthusiasm for teaching, sharing his knowledge and motivating students have not only amazed me, but has made an admirer of everyone who has been taught by him. To me, he has been more than a research advisor, his advice on topics ranging from philosophy to sports have benefited and enriched me in several ways. Whenever I have approached him to discuss ideas for my project, or any generic problem, or even something personal, I have always found an eager listener. I'm grateful to him for being very supportive in letting me pursue my interests outside of academics, and encouraging me to learn and read widely.

I would like to graciously thank Siddiqui sir for his valuable technical guidance, sincere support and generation of practical ideas which helped in carrying this work towards its destination

I would like to express my gratitude to **Mr. Vinod Kumar** with whom I have had many insightful discussions, which have bettered my understanding of various topics related to my project work. My thanks also go to all my batch mates who have made the atmosphere in my classes lively and thought provoking last, but most importantly, I'm grateful to my parents, sister, and family for their love, blessings and support throughout this endeavor.

RITWIZA PHUKAN

LIST OF TABLES	v
LIST OF FIGURES	vi
ABSTRACT	vii
1.0 INTRODUCTION	1
1.1 BACKGROUND	1
1.2 SCOPE OF WORK	2
1.3 OBJECTIVES	3
2.0 LITERATURE SURVEY	4
3.0 MATERIALS AND METHODS	5
3.1METHODOLOGY	7
3.2 PROCESS DESCRIPTION	7
3.3 THINNER AS CLEANING AGENT	11
4.0 RESULTS AND DISCUSSIONS	14
4.1 Raw Mate <mark>ri</mark> als an <mark>d the existing cont</mark> rol measures	
4.2 Requireme <mark>nts as per OSHA 29CFR 1910.106</mark>	16
4.3 Requirements as per IS Standard 9109:2000	23
4.4 Requirements as per IS Standard 7969-1975	
4.5 Requirements for CO ₂ bank as per 1815528: 2004	
5.0 SUMMARY AND CONCLUSION	
5.1 SUMMARY	
5.2 CONCLUSION	34
6.0 REFERENCES	35

Table of Contents

LIST OF TABLES

TABLE TITLE PAGE Literature Survey 2.1 4 3.1 Process Description of the paint shop 7 Chemical properties of thinner 3.2 13 Raw materials and existing control measures 4.1 14 Requirements as per OSHA29CFR 1910.106 4.2 16 Requirements as per IS Standard 9109:2000 4.3 23 Requirements as per IS: 7969-1975 4.4 28

LIST OF FIGURES

FIGURE	TITLE	PAGE
4.1	CO ₂ Flooding System	31
4.2	CO ₂ control panel	31
4.3	Pilot cylinders for paint kitchen	31
4.4	Static Charge Disposer	31
4.5	Safety Sign Board	31
4.6	How to use an extinguisher	31
4.7	Description on CO ₂ flooding system	32
4.8	OCP of Escorts in display	32

ABSTRACT

In most of the industries, fire imposes the greatest threat both in terms of financial loss as well as loss to life and property. The presence of combustible materials, their physical arrangement, the likelihood of ignition and the necessary amount of heat required are the factors on which the risk of fire depends upon. It is widely recognized that solvents and paints play an important in many areas of automobile industry. This project concentrates on the causes of fire and explosion inside the paint shop section of an automobile industry. Thus it considers how fire risk is affected by the storage and handling of flammable substances in the workplace and the effectiveness of the existing measures. This pilot study shows a gap analysis between the existing control measures and the required IS/OSHA/NFPA standards for fire and explosion safety while working with paints and solvents. It focuses on solvents and thinners that are highly flammable and makes the area a high risk zone.

Keywords: Fire and Explosion, Flammable solvents, Fire risk analysis

Chapter 1 INTRODUCTION

1.1 Background

In most of the industries, fire imposes the greatest threat both in terms of financial loss as well as loss to life and property. The presence of combustible materials, their physical arrangement, the likelihood of ignition and the necessary amount of heat required are the factors on which the risk of fire depends upon. Fire protection measures also influence the risk of fire to a great extent. It is widely recognized that chemicals (solvents and paints) play an important and productive role in many areas of industrial activity. The application of paints and other similar coatings, whether by spraying, dipping or other processes, can present fire or explosion hazards. These results not only from the solvent vapors that are emitted but also from mixed paint deposits which may be liable to spontaneous combustion from subsequent drying or baking processes. The term "solvents" refers to liquid organic chemicals used to dissolve solid materials. Solvents can be made from natural sources such as turpentine and the citrus solvents, but most are derived from petroleum or other synthetic sources. Solvents are used widely because they dissolve materials like resins and plastics, and because they evaporate quickly and cleanly. There are no "safe" solvents. All solvents, natural or synthetic, are toxic. Contact either with liquid solvents or inhalations of the vapors they emit into the air are hazardous.

Most organic solvents are generally combustible under the right conditions. Exceptions include those that are heavily halogenated. There are certain criteria that have to be met before ignition will occur.

1. For a vapor ignition, the air and vapor must be present within certain concentrations and an ignition source present.

2. For a liquid fire sufficient air and high enough temperature have to be present to ignite the liquid. The temperature may be from the ignition source such as a static spark or from the liquid itself being above its auto-ignition temperature.

Page | 2

Two properties which affect a solvent's capacity to cause fire and explosions are evaporation rate and flash point. In general, the higher a solvent's evaporation rate, the faster it evaporates and the more readily it can create explosive or flammable air/vapor mixtures. All, solvents, flammable or not, should be isolated from sources of heat, sparks, flame, and static electricity. The products used by the paint department require special storage protocols so that they do not become a danger to those working with them, to those working near them or to the general public. Use of flammable materials in spray painting (e.g. organic solvents), increases the risk of fire and explosion because of the amount of solvent vapor in the air. For a liquid fire sufficient air and high enough temperature have to be present to ignite the liquid. The temperature may be from the ignition source such as a static spark or from the liquid itself being above its auto-ignition temperature.

This report concentrates on the causes of fire and explosion inside the paint shop section of an automobile industry. Thus it considers how fire risk is affected by the storage and handling of flammable substances in the workplace and the effectiveness of the existing measures. This pilot study shows a gap analysis between the existing control measures and the required IS/OSHA/NFPA standards for fire and explosion safety while working with paints and solvents. It focuses on solvents and thinners that are highly flammable and makes the area a high risk zone.

1.2 Scope of Work

- The areas considered in the study were the paint storage area, the paint kitchen, the rag/tag area and the painting area the paint baking oven and the CO₂ bank.
- Flammable substances considered in the study were flammable solvents such as thinner and primer and the paint which was used for painting the automobile parts.
- The study concentrated on storage and handling of paints and solvents in the workplace and control of ignition sources.
- The study was limited to Escorts Agri Machinery Plant -2 Farmtrac

1.3 Objectives:

- Review the effectiveness of current control measures on fire safety for paints and solvents in the workplace.
- Carry out a gap analysis between the existing fire control measures and control measures stated in the IS and OHSAS standards.

Chapter 2

Literature Survey

The following literature review on Fire Risk Analysis in the Paint Shop of Escorts Agri Machinery includes the current knowledge on substantial findings, as well as theoretical and methodological contributions to fire risk analysis in the paint shop of an automobile industry. The table below describes the objective and key findings of the papers that are considered in carrying out the following project.

Author's Name	Title of paper	Objectives	Key Findings
Dillon Consulting	"Paint Department:	To identify the	Solvents and
Ltd. 2011	Health and Safety	precautionary	thinners are
	Guidelines"	measures that should	incompatible with
		be taken to ensure	oxidizing agents; as
		that the release of	oxidizing agents
		these vapors are	increase the risk of
	THE NATION BUILDER	minimized and do	fire if they come
		not accumulate while	into contact with
		the products are in	flammable
		storage.	materials.
			Therefore, thinners
			and solvents should
			be stored away
			from agents such as
			peroxides.
Monona Rossol	"Data Sheet:	To provide	All solvents should
October 10, 1995	SOLVENTS"	guidelines on the use	be isolated from
		of solvents and the	sources of heat,
		hazards associated	sparks, flame and
		with different types	static electricity

Table 2.1 Literature Survey

		of solvents.	
Occupational Safety		The act prevents	Use of flammable
and Health Act		occupational injuries	materials in spray
1984 and		and diseases, also	painting (e.g.
Occupational Safety		places certain duties	organic solvents),
and Health		on employers,	increases the risk of
Regulation 1996		employees, self-	fire and explosion
		employed persons,	because of the
		manufacturers,	amount of solvent
		designers, importers	vapor in the air.
		and suppliers.	
		Occupational Safety	
		and Health	
		Regulation 1996	
		define specific	
		requirements related	
		to a particular hazard	
	THE NATION BUILDER	or a particular type of	
		work.	
Solvents Industry	"Flammable	To identify the	For a liquid fire
Association	Solvents and the	factors responsible to	sufficient air and
	Hazard of Static	cause fire while	high enough
10/2007	Electricity"	using solvents.	temperature have to
			be present to ignite
			the liquid. The
			temperature may be
			from the ignition
			source such as a
			static spark or from
			the liquid itself
			being above its

			auto-ignition
			temperature.
W S Atkins	"Fire risk	• Review the	Fire risk is affected
Consultants Limited	Assessment for	effectiveness	by the handling and
2002	Workplace	of current	storage of
	containing	guidance on	flammable
	Flammable	fire safety for	substances in the
	Substances"	flammable	workplace, and by
		substances in	the control of
		the	ignition sources.
		workplace.	
		• Provide a	
		proposal for a	
		risk	
		assessment	
		method for	
	THE NATION BUILDER	assessing the	
		hazards to	
		workplaces	
		resulting from	
		the storage of	
		flammable	
		substances	
Zurich Management	"Paint Spraying	To Provide guidance	The application of
Services Limited	and Other Painting	on the risk control	paints and other
2011	Processes- Fire	measures which	similar coatings,
	Safety"	should be taken	whether by
		during paint spraying	spraying, dipping or
		and other painting	other process, can
		processes.	present fire hazard.

Chapter 3

MATERIALS AND METHODS

3.1METHODOLOGY

- Understanding the various processes carried out in the paint shop of Escorts Agri Machinery.
- Identifying regions with high risk of fire hazard.
- Identifying the existing control measures in place.
- Comparing the existing measures with the OSHA, NFPA and IS standards

3.2 PROCESS DESCRIPTION

Table3. 1: Process Description of the paint shop

Process	Process Description	Purpose of the Process
No.		
1.	Parts Loading: bare sheet metal components	To take the components
	coming from vendor applied with rust preventive are	through various stages
	loaded on hangers	involved in painting
2.	Predegrease: spray stage having chemical of	For removal of rust preventive
	alkaline nature maintained at a temperature of 50-	oil from the component
	60degree Centigrade. The chemicals used are	applied at vendor end
	namely TPB-1 and TPA-1	
3.	Degrease: dip and spray stage having chemical of	For effective removal of rust
	alkaline nature and maintained at temperature of 50-	preventive oil from the
	60degree centigrade. The chemicals used are namely	component
	TPB-1 and TPA-1	
4.	Water Rinse 1: dip and spray stage with normal	For removal and washing of
	industrial water maintained at room temperature	the degreasing chemical from
		the component

5.	Water Rinse 2: dip and spray stage with normal	For effective washing of the
	industrial water maintained at room temperature	component to remove the
		degreasing chemical
6.	Surface Condition: dip and spray stage with	It prepares the component
	chemical of alkaline nature maintained at a room	surface for phosphate
	temperature. The chemical used is namely GNZS	chemical coating
7.	Phosphating: dip and spray stage with chemical of	Deposits the phosphate layer
	acidic nature maintained at a temperature of 47-	on the component surface
	50degree centigrade. The chemicals used are namely	which makes the surface
	3004R & 3004M	smooth and prevents rust
		formation
8.	Water Rinse 3: spray stage with normal industrial	It removes the sludge formed
	water maintained at room temperature	during the reaction of the
		component with Phosphating
		chemical from the surface of
		the component
9.	Water Rinse 4: dip and spray stage with	For effective washing of the
	demineralized water of conductivity 0-10µ	component and lowering the
	maintained at room temperature	conductivity of the water on
		the component
10.	Water Rinse 5: dip and spray stage with	For effective cleaning of the
	demineralized water of conductivity 0-10µ	component and further
	maintained at room temperature	lowering of the conductivity
		of water settled on the
		component as high
		conductivity water will make
		the CED primer rupture.
11	DM Dingo Spray, arrow stage with domineralized	For offective cleaning and
11.	Divi Kinse Spray: spray stage with demineralized	For effective cleaning and
	water of conductivity $0-10\mu$ maintained at room	lowering the component
11.	water of conductivity $0-10\mu$ maintained at room temperature	lowering the component conductivity before it enters

12.	CED Bath(cathodic electrode position)- dip stage	It provides the coating of the
	with CED primer paint(acidic in nature with ph	CED primer on to the
	6±0.3) maintained at a temperature of 28-30 degree	component by means of
	centigrade and supplied with a voltage of 415V	electric current by making the
	through rectifier. The chemical form of CED primer	component as cathode and
	is F1, F2, Additive- M and Additive- S	paint as anode
13.	Ultra Filtration: spray stage acidic in nature	For washing the excess CED
	maintained at room temperature	paint from the component.
14.	Ultra filtration: dip and spray stage acidic in nature	For effective removing of the
	maintained at room temperature	CED paint from the
		component
15.	DM Rinse: dip stage with demineralized water of	For effective washing of the
	conductivity 0-10 μ maintained at room temperature	component for removal of
		excess paint
16.	Fresh D I Spray: spray stage with demineralized	For curing the CED paint
	water of conductivity 0-10µ maintained at room	
	temperature.	
17.	Baking Oven: over maintained at a temperature of	For covering the joints of the
	175±5degree centigrade.	component to prevent rust
		formation at the joints
18.	Sealer Application Stage: sealer filled guns with no	CED coated component may
	air trapping	contain fine CED dust or
		marks on the component
		which has to be removed
		before top coat application
19.	Sanding and Buffing: emery paper and the buffer	Sealer applied at the
	paper	component joints needs to be
		cured so that it does not
		comes out and also to dry off
		the components before paint
		application

20.	Sealer and Drying Off Oven: oven maintained at a	Sealer applied at the
	temperature of 90±10deg centigrade	component joints needs to be
		cured so that it does not come
		out and also dry off the
		components before paint
		application
21.	Tag Rag: made of fine cotton and polyester cloth of	To completely clean the
	high strength fibers	component surface before
		paint application
22.	Primer Application: applying coating of primer	Primer is applied on the CED
		coated component to prepare
		the surface for painting and
		for proper adhesion
23.	Paint Application: Paint used is TSA	For preventing the component
		against rust and most
	UPES	against rust and most important for imparting
	UPES	againstrustandmostimportantforimpartingaestheticlooktothe
	UPES THE NATION BUILDERS UNIVERSITY	againstrustandmostimportantforimpartingaestheticlooktothecomponent
24.	Baking Oven: oven maintained at a temperature of	againstrustandmostimportantforimpartingaestheticlooktothecomponentFor paint curing
24.	Baking Oven: oven maintained at a temperature of 140±10deg centigrade	againstrustandmostimportantforimpartingaestheticlooktothecomponentFor paint curing
24. 25.	Baking Oven: oven maintained at a temperature of 140±10deg centigrade Unloading and Inspection	againstrustandmostimportantforimpartingaestheticlooktothecomponentFor paint curingInspectionisdonefor
24. 25.	Baking Oven: oven maintained at a temperature of 140±10deg centigrade Unloading and Inspection	againstrustandmostimportantforimpartingaestheticlooktothecomponentFor paint curingInspectionisdoneforcheckingthedesired
24. 25.	Baking Oven: oven maintained at a temperature of 140±10deg centigrade Unloading and Inspection	againstrustandmostimportantforimpartingaestheticlooktothecomponentFor paint curingInspectionisdoneforcheckingthedesiredparameterssuchasgloss,

3.3 THINNER AS A CLEANING AGENT

According to **MSDS 130029**, Thinner is used as a cleaning solvent. OSHA Regulatory classifies this material as hazardous under OSHA Regulations.

- The major ingredient of thinner is Methoxy –propyl Acetate.
- Section 3 of the MSDS indicates thinner to be highly combustible liquid and vapor.
- Section 5 illustrates the firefighting measures of thinner as follows:
 - **Flash Point**: 114° F or 45.5°C
 - **Explosive Limit**: Lower: 1.5%, Upper: 7.0%
 - Auto ignition Temperature: 670°F or 354°C
 - **OSHA Flammability Class:** Combustible Liquid- Class II.
 - Hazardous Products of Combustion: May form toxic and corrosive gases: carbon dioxide, carbon monoxide and various hydrocarbons.
 - Fire and Explosion Hazards: Vapors are heavier than air and may travel along the ground or may be moved by ventilation and ignited by pilot lights, other flames, sparks, heaters, smoking, electric motors, static discharge, or other ignition sources at locations distant from material handling point.
 - Extinguishing media used: Regular foam, carbon dioxide, dry chemical.
 - Fire Fighting Instructions: Water may be used to keep fireexposed containers cool until fire is out.
 - ▶ NFPA Rating: Health 0, Flammability 2, Reactivity 0
- Section 6 describes the accidental release measures as follows:

- In case of spill, eliminate all sources of ignition such as flares, flames including pilot lights, and electrical sparks. Ventilate the area. Wear PPE. Avoid breathing vapors. Collect with an inert absorbant and dispose of properly.
- Section 7 illustrates the handling and storage of thinner as:
 - Handling: All hazard precautions given in the data sheet must be observed. Avoid contact with eyes, skin and clothing. Wash thoroughly after handling. Use only with adequate ventilation. Do not breathe vapors or spray mist. Do not take internally. Close container after each use. Keep out of reach of children.
 - Storage: Store material in a cool, well-ventilated area. For maximum product quality, avoid prolonged storage at temperatures above 75°F (25°C). Do not use or store near heat, sparks, or open flame. Keep container tightly closed. Avoid contact with incompatible materials.
- Section 9 demonstrates the physical and chemical properties of thinner

THE NATION BUILDERS UNIVERSITY

Table 3.2: Chemical Properties of Thinner	
-	

PROPERTY	STANDARD	PROPERTY	STANDARD		
	CONDITION		CONDITION		
Boiling Point:	284 - 302 °F/ 140 -	Vapor Density:	Heavier than air.		
	150 °C				
Specific Gravity /	0.969/ 8.08 lbs/gal	Percent Volatiles by	100 %		
Density:		weight:			
Evaporation Rate:	Slower than ethyl	Physical State:	Liquid		
	ether.				
Melting Point:	Not Available	pH:	Neutral		
Odor:	Sharp, aromatic odor.	Solubility:	19.8g/100ml		
Vapor Pressure:	3.7 mmHg @ 68 °F /	Appearance:	Clear Liquid		
	20 °C				
Octanol/Water	3.6	VOC (as packaged-	8.08 lbs/gal or 969		
Partition	UPE	less exempts and	g/L		
Coefficient:	THE NATION BUILDERS I	water):			
VHAP Content by we	ight (as packaged):	0%			

Chapter 4 RESULTS AND DISCUSSION

The existing measures in the high risk zones of the paint shop were identified. The requirements as per OSHA and Indian Standards were studied for each individual high risk zone in the paint shop and it was observed that the company has abided by this rules and regulations.

4.1	Kaw	Materials	used 11	n the	paint	snop	and	the	existing	g conti	ol meas	ures

PARAMETERS	PAINT	PAINT	RAG/TAG	PAINTING	PAINT	CO ₂ Bank
	STORAGE	KITCHEN	AREA	BOOTH	BAKING	
					OVEN	
Raw Materials	Flammable	Flammable	Thinner	Thinner,	Flammable	CO _{2,} PNG
	paints,	paints,		Flammable	paint fumes	lines
	Thinner	Thinner		paints		
RISK	Fire hazard	1. Fire due	Fire due to	1 . Fire due to	Fire and	Fire due to
	due to	to	Thinner	storage of	explosion	bursting of
	storage of	flammable		thinner inside	hazard due	PNG lines
	flammable	paint and		the paint	to	
	paint and	thinner.		booth	explosive	
	thinner	2. Fire due		2. Fire due to	and	

Table 4.1 Raw Materials and Existing Control Measures in the Paint Shop of Escorts Agri-Machinery

		to mobile		flammable	flammable	
		phones		paints and	paint fumes	
		inside the		fumes		
		paint				
		kitchen				
CONTROLS	1. Open	1.Fire	1.Fire	1. Limited	Flame	Safety
	flames and	Extinguish	Extinguishe	quantity is	proof	valves,
	smoking	ers, no	rs, no	being stored.	lightening,	Isolation
	shall not be	smoking	smoking	Flame proof	CO_2	Valves, Fire
	permitted in	area, flame	area, flame	fittings, no	flooding	tender and
	flammable	proof	proof	smoking	system,	fire-
	or	lighten <mark>in</mark> g,	lightening,	area, mobile	trained and	extinguisher
	combustible	CO ₂	CO_2	prohibition,	experience	
	liquid	flooding	flooding	restricted	person,	
	storage	system	system,	entry, CO ₂	safety	
	areas.	2.	Prohibition	flooding	caution	
	2. Fire	Prohibition	of mobile	system.	displayed.	
	protection	of mobile	phones.	2. Fire		
	system like	phones.	2. Proper	extinguisher,		
	carbon	3. Proper	grounding	no smoking		
	dioxide,	grounding	to prevent	area.		
	water spray	to prevent	static	3.Proper		
	is provided	static	electricity	grounding to		
		electricity		prevent static		
				electricity		

4.2 Requirements as per OSHA 29CFR 1910.106

Table 4.2 Requirements in the high risk zones as per OSHA 29CFR 1910.106

Sl. no.	PAINT	PAINT	RAG/TAG	PAINTING	PAINT	CO ₂ BANK
	STORAGE	KITCHEN	AREA	воотн	BAKING	
					OVEN	
1.	Suitable fire	Suitable fire	Flammable	A mechanical	Prior to the	Automatic
	control devices,	control devices,	liquids shall be	exhaust	furnace heating	detection
	such as small	such as small	kept in covered	ventilation	system startup,	equipment shall
	hose or portable	hose or portable	containers when	system designed	provision shall	be approved,
	fire	fire	not actually in	to provide for a	be made for the	installed and
	extinguishers,	extinguishers,	use. Where	complete	removal of all	maintained in
	shall be available	shall be	flammable or	change of air	flammable	accordance with
	at locations	available at	combustible	within the room	vapors and	1910.164.
	where flammable	locations where	liquids are used	at least six	gases that have	
	or combustible	flammable or	or handled,	times per hour.	entered the	
	liquids are	combustible	except in closed		heating	
	stored.	liquids are	containers,		chambers	
		stored.	means shall be		during the	
			provided to		shutdown	

			dispose		period.	
			promptly and			
			safely of			
			leakage or			
			spills.			
2.	At least one	At least one	Fire protection	Fire protection	Regulators,	At least one
	portable fire	portable fire	system shall be	system shall be	relief valves	manual station
	extinguisher	extinguisher	sprinkler, water	present such as	and switches	is provided for
	having a rating	having a rating	spray, carbon	CO ₂ flooding	shall be vented	discharge
	of not less than	of not less than	dioxide, or	system,	to an approved	activation of
	12-B units shall	12-B units shall	other system.	sprinkler	location.	each fixed
	be located:	be located:		system.		extinguishing
		THE NATIO	IN BOILDERS ONIVE	(SIT		system.
	a. outside of, but	a. outside of,				
	not more than 10	but not more				
	feet from, the	than 10 feet				
	door opening	from, the door				
	into any room	opening into				
	used for storage;	any room used				
	and	for storage; and				
	b. not less than	b. not less than				

	10 feet, nor more	10 feet, nor				
	than 25 feet,	more than 25				
	from any Class I	feet, from any				
	or Class II liquid	Class I or Class				
	storage area	II liquid storage				
	located outside	area located				
	of a storage	outside of a				
	room but inside a	storage room				
	building.	but inside a				
		building.				
3.	Open flames and	Open flames	Open flames	Any electrically	Heating	Provide
	smoking shall	and smoking	and smoking	isolated section	elements must	automatic
	not be permitted	shall not be	shall not be	of metallic	be securely	actuation of
	in flammable or	permitted in	permitted.	piping or	fastened.	total flooding
	combustible	flammable or		equipment shall		systems by
	liquid storage	combustible		be bonded or		means of an
	areas.	liquid storage		grounded to		approved fire
		areas.		prevent		detection device
				hazardous		installed and
				accumulation of		interconnected

				static	with a p	ore-
				electricity. All	discharge	
				nonmetallic	employee ala	rm
				equipment and	system.	
				piping where an		
				ignitable		
				mixture could		
				be present shall		
				be given special		
				consideration		
4.	Materials which	Materials which			Systems	
	react with water	react with water			installed in	the
	shall not be	shall not be	IN BUILDERS UNIVE	RSITY	presence	of
	stored in the	stored in the			corrosive	
	same room with	same room with			atmospheres	are
	flammable or	flammable or			constructed	of
	combustible	combustible			non-corrosive	e
	liquids.	liquids.			material	or
					otherwise	
					protected	

						against
						corrosion.
5.	Fire protection	Fire protection				Assure that the
	system shall be	system shall be				weight and
	sprinkler, water	sprinkler, water				pressure of
	spray, carbon	spray, carbon				refillable
	dioxide, or other	dioxide, or				containers is
	system.	other system.				checked at least
						semi-annually.
						If the container
						shows a loss in
		THE NAT		acity		net content or
		THE NATI	IN BUILDERS UNIVE	A.B.(1)		weight of more
						than 5 percent,
						or a loss in
						pressure of
						more than 10
						percent, it shall
						be subjected to
						maintenance.
1		1		1	1	

6	Every inside	Every inside		
0.	Every mside	Every mside		
	storage room	storage room		
	shall be provided	shall be		
	with either a	provided with		
	gravity or a	either a gravity		
	mechanical	or a mechanical		
	exhaust	exhaust		
	ventilation	ventilation		
	system designed	system designed		
	to provide for a	to provide for a		
	complete change	complete		
	of air within the	change of air		
	room at least six	within the room		
	times per hour.	at least six		
		times per hour.		
7.	Any electrically	Any electrically		All fire
	isolated section	isolated section		protection
	of metallic	of metallic		systems must
	piping or	piping or		have pipes and
	equipment shall	equipment shall		fittings that are

be bonded or	be bonded or		suitable for the
grounded to	grounded to		expected
prevent	prevent		temperature
hazardous	hazardous		extremes with
accumulation of	accumulation of		good corrosion
static electricity.	static		resistance
All nonmetallic	electricity. All		properties.
equipment and	nonmetallic		
piping where an	equipment and		
ignitable mixture	piping where an		
could be present	ignitable		
shall be given	mixture could		
special	be present shall		
consideration.	be given special		
	consideration.		

4.3 Requirements as per IS Standard 9109:2000

Table 4.3 Requirements as per IS Standard 9109:2000

Sl. no.	PAINT	PAINT	RAG/TAG	PAINTING	PAINT
	STORAGE	KITCHEN	AREA	воотн	BAKING
					OVEN
1.	Paint containers	Paint containers	No open flames,	There shall be	Oven shall be
	shall be	shall be	naked lights,	no open flame,	constantly
	supported either	supported either	smoking	spark producing	watched during
	by resting on the	by resting on	electric or gas	devices, or	the process. An
	ground or on	the ground or	cutting and	heated surface	excess
	masonry	on masonry	welding	having a	temperature
	supports. Wood	supports. Wood	equipment shall	temperature	alarm shall be
	or steel supports	or steel supports	be permitted	sufficient to	provided to
	without fire-	without fire-	near the area.	ignite vapors in	attract attention
	proofing shall	proofing shall		any vapor area.	of persons to
	not be permitted.	not be			manually
		permitted.			control the
					situation.

2.	All containers	All containers	The area shall	All containers	Safe operating
	shall be suitably	shall be suitably	be fully	shall be suitably	temperature
	earthed to	earthed to	illuminated.	earthed to	shall not be
	dissipate static	dissipate static		dissipate static	exceeded. An
	charge.	charge.		charge.	automatic
					control shall be
					provided to
					ensure against
					excessive
					temperature.
					Such a system
					shall be
					interlocked with
					a device to shut
					off the heating
					medium.
3.	The containers'	The containers'	A suitable	No open flames,	First aid fire
	vents shall be	vents shall be	automatic fire	naked lights,	appliances shall
	provided with	provided with	detection and	smoking	be properly
	flame arrestors	flame arrestors	alarm system	electric or gas	maintained,
	or pressure-	or pressure-	directly	cutting and	checked, tested

	vacuum vent.	vacuum vent.	connected to a	welding	and refilled as
			central control	equipment shall	specified in IS
			room shall be	be permitted	2190 and proper
			provided.	near the area.	records
					maintained.
4.	No open flames,	No open flames,	No Smoking'	The area shall	
	naked lights,	naked lights,	sign written in	be fully	
	smoking electric	smoking	large letters on	illuminated as	
	or gas cutting	electric or gas	a background of	indicated	
	and welding	cutting and	contrasting	below:	
	equipment shall	welding	colors shall be	Godowns 70,	
	be permitted	equipment shall	conspicuously	Grinding,	
	near the storage	be permitted	displayed in the	mixing, 200	
	area	near the area	vicinity of the	places, lux	
			processing, tank	milling, heating.	
			farm and		
			storage area.		

5.	The area shall be	The area shall	All containers	No Smoking'	
	fully illuminated	be fully	shall be suitably	sign written in	
	as indicated	illuminated as	earthed to	large letters on	
	below: Godowns	indicated	dissipate static	a background of	
	70 lux;	below:	charge.	contrasting	
		Godowns 70,		colors shall be	
		Grinding,		conspicuously	
		mixing, 200		displayed in the	
		places. lux		vicinity of the	
		milling, heating.		processing, tank	
				farm and	
				storage area.	
6.	For high fire risk	For high fire	All electrical	All electrical	
	areas, especially	risk areas,	installations	installations	
	those which	especially those	shall be in	shall be in	
	remain	which remain	accordance with	accordance with	
	unattended for	unattended for	IS 1646. All	IS 1646. All	
	considerable	considerable	lighting fittings	lighting fittings	
	periods, a	periods, a	and switches	and switches	
	suitable	suitable	shall be of the	shall be of the	
	automatic fire	automatic fire	enclosed type.	enclosed type.	
	detection and	detection and			

alarm system	alarm system		
directly	directly		
connected to a	connected to a		
central control	central control		
room shall be	room shall be		
provided.	provided.		

4.4 Requirements as per IS: 7969-1975

Sl. no.	PAINT	PAINT	RAG/TAG	PAINTING
	STORAGE	KITCHEN	AREA	воотн
1.	Paints, varnishes,	Paints, varnishes,	Paint scrapings	When electric
	lacquers, thinners	lacquers, thinners	and paint-saturated	lights, switches or
	and other	and other	rags and debris	electrical
	flammable	flammable	shall be removed	equipment are
	materials shall be	materials shall be	daily from the	necessary, they
	kept m a properly	kept in properly	premises and,	shall be of
	sealed or closed	sealed or closed	preferably,	explosion proof
	containers. The	containers. The	destroyed by	design.
	container shall be	container shall be	burning at a safe	
	kept in a well-	kept in a well-	place.	
	ventilated location,	ventilated location,		
	free from	free from		
	excessive heat,	excessive heat,		
	smoke, sparks or	smoke, sparks or		
	flame.	flame.		

2.	Paint materials in	Paint materials in	When electric	No smoke or open
	quantities other	quantities other	lights, switches or	flame, exposed
	than required for	than required for	electrical	heating elements,
	daily use shall be	daily use shall be	equipment are	or other sources of
	kept stocked under	kept stocked under	necessary, they	ignition of any
	regular storage	regular storage	shall be of	kind shall be
	place.	place.	explosion proof	permitted in areas
			design	or rooms where
				spray painting is
				being done.
3.	When electric	When electric		When painting is
	lights, switches or	lights, switches or		done in confined
	electrical	electrical		spaces where
	equipment are	equipment are		flammable or
	necessary, they	necessary, they		explosive vapors
	shall be of	shall be of		may develop, any
	explosion proof	explosion proof		necessary heat
	design.	design.		shall be provided
				through ductwork
				remote from the
				source of flame.

4.5 Requirements for CO₂ Bank as per IS 15528: 2004

- Piping shall be designed in accordance with IS 15493 to deliver the required rate of application at each nozzle.
- The extinguishing media used shall be carbon dioxide complying with the requirements of IS 15222.

Some of the controls are shown in the following photographs:

Fig 4.1: CO₂ Flooding System

Fig 4.2: CO₂ control panel

Fig 4.3: Pilot cylinders for paint kitchen

Fig 4.4: Static Charge Disposer

Fig 4.5: Safety Sign Board

Fig 4.6: How to use an extinguisher

Fig 4.7: Description on CO₂ flooding system

Fig 4.8: OCP of Escorts in disp

Chapter 5

SUMMARY and CONCLUSION

5.1 SUMMARY

The organization has taken utmost care to abide by the above regulations. The safety measures which are in place in addition to the above controls are:

- In the organization, the paint baking oven has an electrical panel with interlock system. The interlock system maintains the temperature of the oven. If the temperature goes higher than the actual temperature, it will cut off the supply the hot air from the PNG gas pipes and will reduce the temperature and thus preventing fire and explosion.
- the CO₂ bank operates as follows:
 - > The areas are fitted with three smoke detectors. If there is smoke inside the area, at least two of the smoke detectors should send a signal to the electrical panel for the CO_2 flooding system to be activated. Once the signal reaches the panel, the electrical panel sends signals to the pilot cylinders which in turn pressurizes the CO_2 cylinders and through the pipes as well as discharge holes CO_2 gas is released and thus fire is extinguished. In case of small fires, portable cylinders are kept at appropriate places along with sand buckets for extinguishing the fire. The fire department periodically checks the CO_2 cylinders and keeps a track of the pressure inside them.
- Safety sign boards have been placed on all high risk zones such as no use of mobile phones inside the paint booth, paint kitchen etc.
- Static charge disposer has been placed near the doors of paint booth, rag/tag area, paint kitchen etc. to prevent electrocution.
- Safety shoes must be worn inside the paint shop.
- No smoking sign boards are kept in all the places in the high risk zone.
- Mock drills are being carried out once in a month and all the workers are made aware about the Do's and Don'ts when there is a fire.

- The sprinklers are yet to be installed inside the paint shop.
- Flame proof lightening is provided in all the areas such as the paint kitchen, paint storage area, rag/tag area etc.

5.2 CONCLUSION

An organization's asset is its workforce, the property it deals with and the surrounding environment. The standards have been formulated by various regulatory boards so as to have zero accidents and hence no loss of life, no property loss and no environmental effect. It is mandatory to abide by these regulations so as to achieve a 100% profit both in terms of production and safety. This work tried to make a gap analysis between the existing safety measures and that recommended by various regulatory bodies. The automobile industry taken into consideration has in no means sacrificed to follow the safety norms and as can be clearly seen has taken safety as an utmost important aspect along with its production interest. The organization has put up all the necessary sign boards which are to be followed to prevent fire. The workforce is being trained time and again on how to follow the safety norms and what should be done when a fire outbreaks. Thus, Escorts Agri Machinery has proved itself that it does not compromise with the safety of its employees, its surrounding environment and its property and goes hand in hand with the latest safety norms.

Chapter 6

REFERENCES

Dillon Consulting Ltd. "Paint Department: Health and Safety Guidelines", August 2011

IS 9109:2000 Fire Safety Of Industrial Buildings - Paint And Varnish Factories - Code Of Practice

IS 15528: 2004 Gaseous Fire Extinguishing Systems--Carbon Dioxide Total Flooding And Local Application

IS: 7969-1975 Safety code for handling and storage of building materials

Jing Xin, Chongfu Huang, "Fire risk analysis of residential buildings based on scenario clusters and its application in fire risk management", Fire Safety Journal 62 (2013) 72-78

Monona Rossol, "Data Sheet: SOLVENTS", October 10, 1995

NFPA 30 Flammable and Combustible Liquids code

NFPA 86 Standard for Ovens and Furnaces

Occupational Safety and Health Act 1984, Occupational Safety and Health Regulation 1996.

Occupational Health and Safety Administration OSHA, 29 CFR Part 1910 Occupational Safety and Health Standards.

Occupational Health and Safety Administration OSHA 29 CFR Part 1926.66 - Criteria for design and construction of spray booths.

P A Munns, Y Luong and P J Rew, "Fire risk assessment for workplaces containing flammable substances", 2002, ISBN 071762157X

Solvents Industry Association, "Flammable Solvents and the Hazard of Static Electricity", 10/2007

W S Atkins Consultants Limited, "Fire risk assessment for workplace containing flammable substances", 2002

Wan K. Chow, "A study on relationship between burning rate and flame height of internal fire whirls in a vertical shaft model", Journal of Fire Sciences, 014, Vol 32 (I) 72-83.

Zurich Management Services Limited, "Paint spraying and other painting processes-Fire safety", April 2011